Ucdortbes Yayinlari Ayt Deneme Sinavi Soru ve Cozumleri MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F2@

 

1.      1 5 3 1 1 1 3 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaWaaOaaaeaadaWcaaqaaiaaiwdaaeaacaaIZaaaaaWcbeaa kiabgkHiTiaaigdaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGymai abgkHiTmaakaaabaWaaSaaaeaacaaIZaaabaGaaGynaaaaaSqabaaa aaaa@3F1E@  isleminin sonucu kactir?

A)                

B)    -1

C)   

D)    0

E)     1

                                                                             

cevap: D sikki 0.

5 3 1= 5 3 1 = 2 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaada WcaaqaaiaaiwdaaeaacaaIZaaaaaWcbeaakiabgkHiTiaaigdacqGH 9aqpdaGcaaqaamaalaaabaGaaGynaaqaaiaaiodaaaGaeyOeI0IaaG ymaaWcbeaakiabg2da9maakaaabaWaaSaaaeaacaaIYaaabaGaaG4m aaaaaSqabaaaaa@4055@  ve 1 3 5 = 1 3 5 = 2 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTmaakaaabaWaaSaaaeaacaaIZaaabaGaaGynaaaaaSqabaGccqGH 9aqpdaGcaaqaaiaaigdacqGHsisldaWcaaqaaiaaiodaaeaacaaI1a aaaaWcbeaakiabg2da9maakaaabaWaaSaaaeaacaaIYaaabaGaaGyn aaaaaSqabaaaaa@4057@ .

1 2 3 = 3 2 , 3 2 3 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaWaaOaaaeaadaWcaaqaaiaaikdaaeaacaaIZaaaaaWcbeaa aaGccqGH9aqpdaGcaaqaamaalaaabaGaaG4maaqaaiaaikdaaaGaai ilaaWcbeaakmaakaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaaaSqa baGccqGHsisldaGcaaqaamaalaaabaGaaG4maaqaaiaaikdaaaaale qaaOGaeyypa0JaaGimaaaa@41D9@

 

 

2.      x ve y gercel sayilari icin

xy y = 1 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WG4bGaeyOeI0IaamyEaaqaaiaadMhaaaGaeyypa0ZaaSaaaeaacaaI XaaaeaqabeaacaaIZaaabaaaaaaaaa@3C7E@  , 3x+y=35 olduguna gore, y kactir?

a)      7                 b) 5                 c) 6                  d)4          e)3

cevap: a sikki 7.

İ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaaaaaaaWdbiaa=btaaaa@37BE@ cler dislar carpimi yaptigimizda; 3x yerine 4y yazariz.

3x3y=y,4y=3x,5y=35,y=7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaadI hacqGHsislcaaIZaGaamyEaiabg2da9iaadMhacaGGSaGaaGinaiaa dMhacqGH9aqpcaaIZaGaamiEaiaacYcacaaI1aGaamyEaiabg2da9i aaiodacaaI1aGaaiilaiaadMhacqGH9aqpcaaI3aaaaa@49E9@

 

 

 

 

3.      (n1)! n!(n1)! = 1 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca GGOaGaamOBaiabgkHiTiaaigdacaGGPaGaaiyiaaqaaiaad6gacaGG HaGaeyOeI0Iaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaacgcaaa Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGynaaaaaaa@444A@   olduguna gore, n! (n1)! MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGUbGaaiyiaaqaaiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacaGG Haaaaaaa@3C34@  ifadesinin degeri kactir?

a)      5

b)      6

c)      7

d)     4

e)      8

cevap: b sikki 6.

n!=n. n1 !,n! n1 != n1 !.(n1), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacg cacqGH9aqpcaWGUbGaaiOlamaabmaabaGaamOBaiabgkHiTiaaigda aiaawIcacaGLPaaacaGGHaGaaiilaiaad6gacaGGHaGaeyOeI0Yaae WaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcacqGH 9aqpdaqadaqaaiaad6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaai yiaiaac6cacaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaaiilaaaa @5222@  olduguna gore, (n-1)! ifadesi sadelesir. (n-1)=5 , n=6

6! 5! =6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI2aGaaiyiaaqaaiaaiwdacaGGHaaaaiabg2da9iaaiAdaaaa@3A92@  ’dir.

MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F2@

 

4.       

1 x 2 (x 1 x ) 2 2 +x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabe aadaWcaaqaamaalaaabaGaaGymaaqaamaaCaaameqabaGaamiEamaa CaaabeqaaiaaikdaaaaaaaaaliabgkHiTiaacIcacaWG4bGaeyOeI0 YaaSaaaeaacaaIXaaabaGaamiEaaaacaGGPaWaaWbaaWqabeaacaaI YaaaaaWcbaWaaOaaaeaacaaIYaaameqaaSGaey4kaSIaamiEaaaaaa aaaa@42BE@  ifadesinin en sade hali hangisidir?

a)      1

b)      2-x

c)      X-2

d)     X- 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaaaa@36CA@

e)      2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaaaa@36CA@  - x

a)      cevap: e sikki 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaaaa@36CA@  - x

 

x 1 x 2 = x 2 2+ 1 x 2 1 x 2 ( x 2 2+ 1 x 2 )= x 2 +2 x 2 +2 2 +x = 2 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaqada qaaiaadIhacqGHsisldaWcaaqaaiaaigdaaeaacaWG4baaaaGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadIhadaahaa WcbeqaaiaaikdaaaGccqGHsislcaaIYaGaey4kaSYaaSaaaeaacaaI XaaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaaaakeaadaWcaaqaai aaigdaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaa cIcacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabgU caRmaalaaabaGaaGymaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaa aOGaaiykaiabg2da9iabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaIYaaabaWaaSaaaeaacqGHsislcaWG4bWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGOmaaqaamaakaaabaGaaGOmaaWcbe aakiabgUcaRiaadIhaaaGaeyypa0ZaaOaaaeaacaaIYaaaleqaaOGa eyOeI0IaamiEaaaaaa@6139@

                                                                                                       

 

 

MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F2@

5.      f n =3.n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGUbaabeaakiabg2da9iaaiodacaGGUaGaamOBaaaa@3B6F@ , n≤2

  f n =n+ f n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGUbaabeaakiabg2da9iaad6gacqGHRaWkcaWGMbWaaSba aSqaaiaad6gacqGHsislcaaIXaaabeaaaaa@3E94@  , n>2 olduguna gore,

f 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaI0aaabeaaaaa@37C8@  ifadesinin degeri kactir?

a)      15

b)      13

c)      11

d)     10

e)      17

 

cevap: b sikki 13

  f 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaI0aaabeaaaaa@37C8@  icin f n =n+ f n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGUbaabeaakiabg2da9iaad6gacqGHRaWkcaWGMbWaaSba aSqaaiaad6gacqGHsislcaaIXaaabeaaaaa@3E94@  esitligine bakariz.

f 4 =4+ f 3 f 3 =3+ f 2 f 2 =3.2=6 f 4 =4+3+6=13 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb WaaSbaaSqaaiaaisdaaeqaaOGaeyypa0JaaGinaiabgUcaRiaadAga daWgaaWcbaGaaG4maaqabaaakeaacaWGMbWaaSbaaSqaaiaaiodaae qaaOGaeyypa0JaaG4maiabgUcaRiaadAgadaWgaaWcbaGaaGOmaaqa baaakeaacaWGMbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaG4mai aac6cacaaIYaGaeyypa0JaaGOnaaqaaiaadAgadaWgaaWcbaGaaGin aaqabaGccqGH9aqpcaaI0aGaey4kaSIaaG4maiabgUcaRiaaiAdacq GH9aqpcaaIXaGaaG4maaaaaa@52F5@

6.      i 2 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaGOmaaaakiabg2da9iabgkHiTiaaigdaaaa@3A82@  olmak uzere

z 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIXaaabeaaaaa@37D9@  = 1i 1+i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaGaeyOeI0IaamyAaaqaaiaaigdacqGHRaWkcaWGPbaaaaaa@3B24@

z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIYaaabeaaaaa@37DA@  = 1i 1+i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaGaeyOeI0IaamyAaaqaaiaaigdacqGHRaWkcaWGPbaaaaaa@3B24@  

Olduguna gore z 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIXaaabeaaaaa@37D9@  - z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIYaaabeaaaaa@37DA@  karmasik sayisinin sanal kismi kactir?

a)      0

b)      2

c)      -1

d)     -2

e)      1

cevap:b sikki 2

  1+i 1i 1i 1+i = 1+i 2 1i 2 1i .(1+i) = 4i 2 =2i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaGaey4kaSIaamyAaaqaaiaaigdacqGHsislcaWGPbaaaiabgkHi TmaalaaabaGaaGymaiabgkHiTiaadMgaaeaacaaIXaGaey4kaSIaam yAaaaacqGH9aqpdaWcaaqaamaabmaabaGaaGymaiabgUcaRiaadMga aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsisldaqada qaaiaaigdacqGHsislcaWGPbaacaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaaGcbaWaaeWaaeaacaaIXaGaeyOeI0IaamyAaaGaayjkai aawMcaaiaac6cacaGGOaGaaGymaiabgUcaRiaadMgacaGGPaaaaiab g2da9maalaaabaGaaGinaiaadMgaaeaacaaIYaaaaiabg2da9iaaik dacaWGPbaaaa@5C41@                

 

 

 

7.      x+2 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WG4bGaey4kaSIaaGOmaaqaaiaadIhaaaaaaa@399B@  < x

Esitsizligini saglamayan kac tane dogal sayi vardir?

a)     1

b)    2

c)     4

d)    3

e)     5

 

cevap:d sikki 3.

0,1, 2. 3 tane dogal sayi vardir.

 

8.       

x 2 x3=f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaadIhacqGHsislcaaIZaGaeyyp a0JaamOzaiaacIcacaWG4bGaaiykaaaa@3FBE@  olmak uzere,

f( x 1 )=f( x 2 )=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaadAga caGGOaGaamiEamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpca aIWaaaaa@411E@  olduguna gore,

f( x 1 + x 2 ).f( x 1 . x 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaa leaacaaIYaaabeaakiaacMcacaGGUaGaamOzaiaacIcacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaaiOlaiaadIhadaWgaaWcbaGaaGOmaaqa baGccaGGPaaaaa@447B@

İ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaaaaaaaWdbiaa=btaaaa@37BE@ fadesinin degeri kactir? ( x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37D7@ x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@37D8@  )

a)      -32

b)      -27

c)      -30

d)     27

e)      30

                                                                             

cevap:b sikki -27

f( x 1 + x 2 ).f( x 1 . x 2 )= ( x 1 + x 2 ) 2 ( x 1 + x 2 )3 . ( x 1 . x 2 ) 2 ( x 1 . x 2 )3 f( x 1 )=f( x 2 )=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb GaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4bWa aSbaaSqaaiaaikdaaeqaaOGaaiykaiaac6cacaWGMbGaaiikaiaadI hadaWgaaWcbaGaaGymaaqabaGccaGGUaGaamiEamaaBaaaleaacaaI YaaabeaakiaacMcacqGH9aqpdaWadaqaaiaacIcacaWG4bWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIYaaabeaa kiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHsislcaGGOaGaamiEam aaBaaaleaacaaIXaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGOm aaqabaGccaGGPaGaeyOeI0IaaG4maaGaay5waiaaw2faaiaac6cada WadaqaaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiOlaiaa dIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaWaaWbaaSqabeaacaaIYa aaaOGaeyOeI0IaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGG UaGaamiEamaaBaaaleaacaaIYaaabeaakiaacMcacqGHsislcaaIZa aacaGLBbGaayzxaaaabaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaa igdaaeqaaOGaaiykaiabg2da9iaadAgacaGGOaGaamiEamaaBaaale aacaaIYaaabeaakiaacMcacqGH9aqpcaaIWaaaaaa@745D@  ise

 

x 2 x3=0, x 1 + x 2 =1, x 1 . x 2 =3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaadIhacqGHsislcaaIZaGaeyyp a0JaaGimaiaacYcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaamiEamaaBaaaleaacaaIYaaabeaakiabg2da9iaaigdacaGGSaGa amiEamaaBaaaleaacaaIXaaabeaakiaac6cacaWG4bWaaSbaaSqaai aaikdaaeqaaOGaeyypa0JaeyOeI0IaaG4maaaa@4C56@  ( kokler toplami b a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaWGIbaabaGaamyyaaaaaaa@38BD@ , kokler carpimi c a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGJbaabaGaamyyaaaaaaa@37D1@  dan) Cevap: -27

 

 

                                                                             

 

9.       

P(x)= (x1) 10 . (x+1) 10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI cacaWG4bGaaiykaiabg2da9iaacIcacaWG4bGaeyOeI0IaaGymaiaa cMcadaahaaWcbeqaaiaaigdacaaIWaaaaOGaaiOlaiaacIcacaWG4b Gaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaigdacaaIWaaaaaaa @4615@

polinomunun  x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaaaaa@37D9@  -2 ile bolumunden kalan asagidakilerden hangisidir?

 

a)      x

b)      -x

c)      0

d)     1

e)      -1

 

cevap: d sikki 1.  

P(x)= ( x 2 1) 10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI cacaWG4bGaaiykaiabg2da9iaacIcacaWG4bWaaWbaaSqabeaacaaI YaaaaOGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaaigdacaaIWa aaaaaa@40B7@  ’dir.

x 2 2=0 x 2 =2 21=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabg2da9iaaicda aeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGOmaaqaai aaikdacqGHsislcaaIXaGaeyypa0JaaGymaaaaaa@432B@

 

10.   

Parcali f fonksiyonu,

F(x)= 2+ x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WG4baaleqaaaaa@370B@ , x≥0

F(x)= x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaaaaa@37D9@  +2x+a, x<0

x=0 noktasinda surekli olduguna gore, F(-1) kactir?

a)      3

b)      1

c)      2

d)     4

e)      0

cevap: b sikki 1.   x=0 noktasinda surekli ise iki denklem icinde 0 noktasinda ayni sayiyi bulmamiz gerekir.

F x =+2x+a, x<0 F(1)= (1) 2 +2.(1)+a F(0)= 0 2 +2.0+a=2+ 0 ,a=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaadAeapaWaaeWaaeaapeGaamiEaaWdaiaawIcacaGLPaaa peGaeyypa0Jaey4kaSIaaGOmaiaadIhacqGHRaWkcaWGHbGaaiilai aabccacaWG4bGaeyipaWJaaGimaaqaaiaadAeacaGGOaGaeyOeI0Ia aGymaiaacMcacqGH9aqpcaGGOaGaeyOeI0IaaGymaiaacMcadaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaiOlaiaacIcacqGHsisl caaIXaGaaiykaiabgUcaRiaadggaaeaacaWGgbGaaiikaiaaicdaca GGPaGaeyypa0JaaGimamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa ikdacaGGUaGaaGimaiabgUcaRiaadggacqGH9aqpcaaIYaGaey4kaS YaaOaaaeaacaaIWaaaleqaaOGaaiilaiaadggacqGH9aqpcaaIYaaa aaa@643E@  ise F(1)= (1) 2 +2.(1)+a F(1)=12+2=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaaabaaa aaaaaapeqaaiaadAeacaGGOaGaeyOeI0IaaGymaiaacMcacqGH9aqp caGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIYaGaaiOlaiaacIcacqGHsislcaaIXaGaaiykaiabgUca RiaadggaaeaacaWGgbGaaiikaiabgkHiTiaaigdacaGGPaGaeyypa0 JaaGymaiabgkHiTiaaikdacqGHRaWkcaaIYaGaeyypa0JaaGymaaaa aa@508F@  olur.

 

 

 

11.  f(x)=sin(πx) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaacIcacqaH apaCcaWG4bGaaiykaaaa@4125@

olduguna gore, f ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa aaleqabaGaai4jaaaaaaa@37B6@  (1) kactir?

a)     

b)      1

c)      -1

d)     π

e)      π 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaW baaSqabeaacaaIYaaaaaaa@3899@

a)      cevap: a sikki -π

 fonksiyonun turevini aliriz. x yerine 1 yazariz.

f ' (x)=πcos(πx) f ' (1)=π.cos(π)=π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb WaaWbaaSqabeaacaGGNaaaaOGaaiikaiaadIhacaGGPaGaeyypa0Ja eqiWdaNaci4yaiaac+gacaGGZbGaaiikaiabec8aWjaadIhacaGGPa aabaGaamOzamaaCaaaleqabaGaai4jaaaakiaacIcacaaIXaGaaiyk aiabg2da9iabec8aWjaac6caciGGJbGaai4BaiaacohacaGGOaGaeq iWdaNaaiykaiabg2da9iabgkHiTiabec8aWbaaaa@54B5@

12.         e e 2 1 x dx= log a 2b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada WcaaqaaiaaigdaaeaacaWG4baaaiaadsgacaWG4bGaeyypa0JaciiB aiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaaGOmaiaadkgaaS qaaiaadwgaaeaacaWGLbWaaWbaaWqabeaacaaIYaaaaaqdcqGHRiI8 aaaa@455D@

olduguna gore, b hangisine kesinlikle esittir?

a)      e 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGLbaabaGaaGOmaaaaaaa@37A9@

b)      2e

c)      a

d)     1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaaa@377A@

e)      a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGHbaabaGaaGOmaaaaaaa@37A5@

a)      cevap: e sikki a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGHbaabaGaaGOmaaaaaaa@37A5@

 : 1 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaamiEaaaaaaa@37BB@  in integrali lnx+c olduguna gore,

e e 2 1 x dx=ln e 2 lne=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada WcaaqaaiaaigdaaeaacaWG4baaaiaadsgacaWG4bGaeyypa0JaciiB aiaac6gacaWGLbWaaWbaaSqabeaacaaIYaaaaaqaaiaadwgaaeaaca WGLbWaaWbaaWqabeaacaaIYaaaaaqdcqGHRiI8aOGaeyOeI0IaciiB aiaac6gacaWGLbGaeyypa0JaaGymaaaa@4900@ , log a 2b=1,b= a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaaGOmaiaadkgacqGH9aqp caaIXaGaaiilaiaadkgacqGH9aqpdaWcaaqaaiaadggaaeaacaaIYa aaaaaa@4192@  dir.

 

 

 

13.   

1 sin 150 0 + 1 tan 135 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaci4CaiaacMgacaGGUbGaaGymaiaaiwdacaaIWaWaaWba aSqabeaacaaIWaaaaaaakiabgUcaRmaalaaabaGaaGymaaqaaiGacs hacaGGHbGaaiOBaiaaigdacaaIZaGaaGynamaaCaaaleqabaGaaGim aaaaaaaaaa@4457@  ifadesinin degeri kactir?

a)      3

b)      3 2 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada GcaaqaaiaaiodaaSqabaaakeaacaaIYaaaaiabgkHiTiaaigdaaaa@3949@

c)      3 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIZaaabaGaaGOmaaaaaaa@3869@

d)     1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaaa@377A@

e)      1

cevap: e sikki 1.

  sin 150 0 = 1 2 ,tan135=tan45=1 1 1 2 + 1 1 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaciGGZb GaaiyAaiaac6gacaaIXaGaaGynaiaaicdadaahaaWcbeqaaiaaicda aaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYcaciGG0b Gaaiyyaiaac6gacaaIXaGaaG4maiaaiwdacqGH9aqpcqGHsislciGG 0bGaaiyyaiaac6gacaaI0aGaaGynaiabg2da9iabgkHiTiaaigdaae aadaWcaaqaaiaaigdaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaa cqGHRaWkdaWcaaqaaiaaigdaaeaacqGHsislcaaIXaaaaiabg2da9i aaigdaaaaa@5493@

 

14.       x 2 2 x x+2 + x+2 2x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada WcaaqaaiaadIhaaeaacaaIYaaaaiabgkHiTmaalaaabaGaaGOmaaqa aiaadIhaaaaabaGaamiEaiabgUcaRiaaikdaaaGaey4kaSYaaSaaae aacaWG4bGaey4kaSIaaGOmaaqaaiaaikdacaWG4baaaaaa@4263@      ifadesinin sade hali asagidakilerden hangisidir?

a)      x

b)      x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WG4baabaGaaGOmaaaaaaa@37BC@

c)      1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaaa@377A@

d)     1

e)      -1

 

cevap: d sikki 1.

  İ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaaaaaaaWdbiaa=btaaaa@37BE@ ki kare farki acilimini yaptiktan sonra, pay ve payda sadelesiyor.

x 2 2 x x+2 + x+2 2x = x 2 4 2x x+2 + x+2 2x x 2 4 2x x+2 = x2 x+2 2x.(x+2) = (x2) 2x (x2) 2x + x+2 2x =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaamaalaaabaGaamiEaaqaaiaaikdaaaGaeyOeI0YaaSaaaeaacaaI YaaabaGaamiEaaaaaeaacaWG4bGaey4kaSIaaGOmaaaacqGHRaWkda WcaaqaaiaadIhacqGHRaWkcaaIYaaabaGaaGOmaiaadIhaaaGaeyyp a0ZaaSaaaeaadaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccq GHsislcaaI0aaabaGaaGOmaiaadIhaaaaabaGaamiEaiabgUcaRiaa ikdaaaGaey4kaSYaaSaaaeaacaWG4bGaey4kaSIaaGOmaaqaaiaaik dacaWG4baaaaqaamaalaaabaWaaSaaaeaacaWG4bWaaWbaaSqabeaa caaIYaaaaOGaeyOeI0IaaGinaaqaaiaaikdacaWG4baaaaqaaiaadI hacqGHRaWkcaaIYaaaaiabg2da9maalaaabaWaaeWaaeaacaWG4bGa eyOeI0IaaGOmaaGaayjkaiaawMcaamaabmaabaGaamiEaiabgUcaRi aaikdaaiaawIcacaGLPaaaaeaacaaIYaGaamiEaiaac6cacaGGOaGa amiEaiabgUcaRiaaikdacaGGPaaaaiabg2da9maalaaabaGaaiikai aadIhacqGHsislcaaIYaGaaiykaaqaaiaaikdacaWG4baaaaqaamaa laaabaGaaiikaiaadIhacqGHsislcaaIYaGaaiykaaqaaiaaikdaca WG4baaaiabgUcaRmaalaaabaGaamiEaiabgUcaRiaaikdaaeaacaaI YaGaamiEaaaacqGH9aqpcaaIXaaaaaa@7C3A@

15.   

Parcali tanimlanmis bir f fonksiyonu

f(x)=1x,x>2 f(x)= x 2 +a,x2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb GaaiikaiaadIhacaGGPaGaeyypa0JaaGymaiabgkHiTiaadIhacaGG SaGaamiEaiabg6da+iaaikdaaeaacaWGMbGaaiikaiaadIhacaGGPa Gaeyypa0JaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadgga caGGSaGaamiEaiabgsMiJkaaikdaaaaa@4C74@       bicimindedir.

(fof) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadA gacaWGVbGaamOzaiaacMcaaaa@3A16@  (3)=0      olduguna gore, a kactir?

a)      -9

b)      -4

c)      2

d)     -2

e)      -1

cevap: b sikki -4.

f(3)=13=2 f(2)= (2) 2 +a=0, a=4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb GaaiikaiaaiodacaGGPaGaeyypa0JaaGymaiabgkHiTiaaiodacqGH 9aqpcqGHsislcaaIYaaabaGaamOzaiaacIcacqGHsislcaaIYaGaai ykaiabg2da9iaacIcacqGHsislcaaIYaGaaiykamaaCaaaleqabaGa aGOmaaaakiabgUcaRiaadggacqGH9aqpcaaIWaGaaiilaaqaaiaadg gacqGH9aqpcqGHsislcaaI0aaaaaa@4FCD@

16.   

i 2 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaGOmaaaakiabg2da9iabgkHiTiaaigdaaaa@3A82@  olmak uzere

z=2(i. z ¯ )+3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiabg2 da9iaaikdacaGGOaGaamyAaiaac6cadaqdaaqaaiaadQhaaaGaaiyk aiabgUcaRiaaiodaaaa@3E5C@

Esitligini saglayan z karmasik sayisi asagidakilerden hangisidir?

a)      i-1

b)      1-i

c)      1+i

d)     -1-2i

e)      2i

 

a)      cevap: d sikki -1-2i

Bir karmasik sayinin eslenigi sanal kisminin katsayisinin carpma islemine gore tersi alanarak bulunur.

  z=2(i. z ¯ )+3 z=a+ib, z ¯ =aib a+ib=2.(i.(aib)+3 12i=2.(i.(1+2i)+3 2.(i.(1+2i)+3=2i+4 i 2 +3=2i1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG6b Gaeyypa0JaaGOmaiaacIcacaWGPbGaaiOlamaanaaabaGaamOEaaaa caGGPaGaey4kaSIaaG4maaqaaiaadQhacqGH9aqpcaWGHbGaey4kaS IaamyAaiaadkgacaGGSaWaa0aaaeaacaWG6baaaiabg2da9iaadgga cqGHsislcaWGPbGaamOyaaqaaiaadggacqGHRaWkcaWGPbGaamOyai abg2da9iaaikdacaGGUaGaaiikaiaadMgacaGGUaGaaiikaiaadgga cqGHsislcaWGPbGaamOyaiaacMcacqGHRaWkcaaIZaaabaGaeyOeI0 IaaGymaiabgkHiTiaaikdacaWGPbGaeyypa0JaaGOmaiaac6cacaGG OaGaamyAaiaac6cacaGGOaGaeyOeI0IaaGymaiabgUcaRiaaikdaca WGPbGaaiykaiabgUcaRiaaiodaaeaacaaIYaGaaiOlaiaacIcacaWG PbGaaiOlaiaacIcacqGHsislcaaIXaGaey4kaSIaaGOmaiaadMgaca GGPaGaey4kaSIaaG4maiabg2da9iabgkHiTiaaikdacaWGPbGaey4k aSIaaGinaiaadMgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZa Gaeyypa0JaeyOeI0IaaGOmaiaadMgacqGHsislcaaIXaaaaaa@8286@

17.   

P(x1) Q(x+2) +x= x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGqbGaaiikaiaadIhacqGHsislcaaIXaGaaiykaaqaaiaadgfacaGG OaGaamiEaiabgUcaRiaaikdacaGGPaaaaiabgUcaRiaadIhacqGH9a qpcaWG4bWaaWbaaSqabeaacaaIYaaaaaaa@446B@

Bagintisi veriliyor.

Q(3x-1) polinomunun (x-2) ile bolumunden kalan -2 olduguna gore, P(2x) polinomunun katsayilar toplami kactir?

a)      -12

b)      -9

c)      -6

d)     6

e)      12

Cevap: a sikki -12.

18.   

P(x)= (x2) 4 4. (x+3) 3 + (x1) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI cacaWG4bGaaiykaiabg2da9iaacIcacaWG4bGaeyOeI0IaaGOmaiaa cMcadaahaaWcbeqaaiaaisdaaaGccqGHsislcaaI0aGaaiOlaiaacI cacaWG4bGaey4kaSIaaG4maiaacMcadaahaaWcbeqaaiaaiodaaaGc cqGHRaWkcaGGOaGaamiEaiabgkHiTiaaigdacaGGPaWaaWbaaSqabe aacaaIYaaaaaaa@4C27@

Polinomunda x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaaaaa@37D9@  li terimin katsayisi kactir?

a)      -30

b)      32

c)      33

d)     -13

e)      -11

cevap: e sikki -11

 

 

 

 

19.   

              x+ 1 x .(ax)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgU caRmaalaaabaGaaGymaaqaaiaadIhaaaGaaiOlaiaacIcacaWGHbGa eyOeI0IaamiEaiaacMcacqGH9aqpcaaIWaaaaa@4035@  denkleminin kokleri x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37D7@  ve x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@37D8@  dir.

x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37D7@ . x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@37D8@  = x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37D7@  + x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@37D8@  olduguna gore, bu denklem ile ilgili asagidakilerden hangisi dogrudur?

a)      2 farkli karmasik koku vardir.

b)      2farkli gercel koku vardir.

c)      Esit 2 karmasik koku vardir.

d)     Esit 2 gercel koku vardir.

e)      Mevcut bilgilerle gercel koklerinin olup olmadigi bulunamaz.

 

cevap: a sikki 2 farkli karmasik koku vardir.

Kokler toplami ve kokler carpiminin esit oldugunu goruyoruz. O halde;

 

x 2 x+a=0, (1) 1 = a 1 a=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEaiabgUcaRiaadgga cqGH9aqpcaaIWaGaaiilaaqaamaalaaabaGaeyOeI0Iaaiikaiabgk HiTiaaigdacaGGPaaabaGaaGymaaaacqGH9aqpdaWcaaqaaiaadgga aeaacaaIXaaaaaqaaiaadggacqGH9aqpcaaIXaaaaaa@4824@  Denklemimiz x 2 x+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaadIhacqGHRaWkcaaIXaaaaa@3B6A@  dir. 2 farkli karmasik koku vardir.

kokler: 1 2 3i 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOmaaaacqWItisBdaGcaaqaamaalaaabaGa aG4maiaadMgaaeaacaaIYaaaaaWcbeaaaaa@3C2C@  seklinde gosterilir.

 

MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F2@  

 

20.   

x gercel sayi olmak uzere

x 2 x =6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca WG4baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ya aqWaaeaacaWG4baacaGLhWUaayjcSdGaeyypa0JaaGOnaaaa@41D7@  

Denklemini saglayan x degerlerinin carpimi kactir?

a)      -19

b)      -36

c)      -4

d)     18

e)      -9

 

cevap:e sikki -9.

 6 sayisini esitligin sol tarafina atarsak;

x 2 x 6=0 x=3,x=2x>0 x=3,x=2x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaabda qaaiaadIhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccqGH sisldaabdaqaaiaadIhaaiaawEa7caGLiWoacqGHsislcaaI2aGaey ypa0JaaGimaaqaaiaadIhacqGH9aqpcaaIZaGaaiilaiaadIhacqGH 9aqpcqGHsislcaaIYaGaeyOKH4QaamiEaiabg6da+iaaicdaaeaaca WG4bGaeyypa0JaeyOeI0IaaG4maiaacYcacaWG4bGaeyypa0JaaGOm aiabgkziUkaadIhacqGH8aapcaaIWaaabaaaaaa@5B13@  cevap  x sayilarinin carpimi -9 eder. (3.-3)

21.   

log 2 x 2 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOWaaOaaaeaacaWG4bWaaOaa aeaacaaIYaaaleqaaaqabaGccqGH9aqpcaaIXaaaaa@3D64@  

olduguna gore x kactir?

a)      4

b)      2

c)      2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaaaa@36CA@

d)     2 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaaaa@36CA@

e)      4 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaaaa@36CA@

cevap: d sikki 2 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaaaa@36CA@

 

  log 2 x 2 =1 x 2 =2 x 2 =4 x=2 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaciGGSb Gaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaGcdaGcaaqaaiaadIha daGcaaqaaiaaikdaaSqabaaabeaakiabg2da9iaaigdaaeaadaGcaa qaaiaadIhadaGcaaqaaiaaikdaaSqabaaabeaakiabg2da9iaaikda aeaacaWG4bWaaOaaaeaacaaIYaaaleqaaOGaeyypa0JaaGinaaqaai aadIhacqGH9aqpcaaIYaWaaOaaaeaacaaIYaaaleqaaaaaaa@4855@  

22.    x tam sayi olmak uzere

x 2 xx x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaadIhacqGHKjYOcaWG4bGaeyOe I0IaamiEamaaCaaaleqabaGaaGOmaaaaaaa@3F52@

Esitsizligini saglayan kac tane x degeri vardir?

a)      4

b)      3

c)      2

d)     1

e)      10

cevap:b sikki 3.

 Benzer ifadeleri esitsizligin bir tarafina topladigimizda, x degerinin -1,0 veya 1 olabilecegini goruyoruz.

x 2 xx x 2 2 x 2 2x x 2 x x=1,x=0,x=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEaiabgsMiJkaadIha cqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaadI hadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaaIYaGaamiEaaqaaiaa dIhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaWG4baabaGaamiEai abg2da9iaaigdacaGGSaGaamiEaiabg2da9iaaicdacaGGSaGaamiE aiabg2da9iabgkHiTiaaigdaaaaa@54A7@ ,                                                

 

 

 

23.   

x= log 3 4 log 4 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9maalaaabaGaciiBaiaac+gacaGGNbWaa0baaSqaaiaaiodaaeaa caaI0aaaaaGcbaGaciiBaiaac+gacaGGNbWaa0baaSqaaiaaisdaae aacaaIZaaaaaaaaaa@4100@

olduguna gore,

log 2 3 log 3 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaci GGSbGaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaGccaaIZaaabaGa ciiBaiaac+gacaGGNbWaaSbaaSqaaiaaiodaaeqaaOGaaGOmaaaaaa a@3F01@

İ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaaaaaaaWdbiaa=btaaaa@37BE@ fadesinin x cinsinden degeri kactir?

a)      2 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaamiEaaaaaaa@37BC@

b)      2 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaada WcaaqaaiaaikdaaeaacaWG4baaaaWcbeaaaaa@37D7@

c)      4 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI0aaaeaqabeaacaWG4baabaaaaaaaaa@37C5@

d)     2 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaWaaOaaaeaacaWG4baaleqaaaaaaaa@37D7@

e)      4 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI0aaabaWaaOaaaeaacaWG4baaleqaaaaaaaa@37D9@

a)      cevap: c sikki 4 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI0aaaeaqabeaacaWG4baabaaaaaaaaa@37C5@

x= log 3 4 log 4 3 log 3 4 =2 log 3 2 log 4 3= 1 2 log 2 3 x= 2log2 log3 log3 2log2 = 4.log2.log2 log3.log3 log 2 3 log 3 2 = log3 log2 log2 log3 = log3.log3 log2.log2 = 4 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b Gaeyypa0ZaaSaaaeaaciGGSbGaai4BaiaacEgadaqhaaWcbaGaaG4m aaqaaiaaisdaaaaakeaaciGGSbGaai4BaiaacEgadaqhaaWcbaGaaG inaaqaaiaaiodaaaaaaaGcbaGaciiBaiaac+gacaGGNbWaa0baaSqa aiaaiodaaeaacaaI0aaaaOGaeyypa0JaaGOmaiGacYgacaGGVbGaai 4zamaaBaaaleaacaaIZaaabeaakiaaikdaaeaaciGGSbGaai4Baiaa cEgadaWgaaWcbaGaaGinaaqabaGccaaIZaGaeyypa0ZaaSaaaeaaca aIXaaabaGaaGOmaaaaciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGOm aaqabaGccaaIZaaabaGaamiEaiabg2da9maalaaabaWaaSaaaeaaca aIYaGaciiBaiaac+gacaGGNbGaaGOmaaqaaiGacYgacaGGVbGaai4z aiaaiodaaaaabaWaaSaaaeaaciGGSbGaai4BaiaacEgacaaIZaaaba GaaGOmaiGacYgacaGGVbGaai4zaiaaikdaaaaaaiabg2da9maalaaa baGaaGinaiaac6caciGGSbGaai4BaiaacEgacaaIYaGaaiOlaiGacY gacaGGVbGaai4zaiaaikdaaeaaciGGSbGaai4BaiaacEgacaaIZaGa aiOlaiGacYgacaGGVbGaai4zaiaaiodaaaaabaWaaSaaaeaaciGGSb Gaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaGccaaIZaaabaGaciiB aiaac+gacaGGNbWaaSbaaSqaaiaaiodaaeqaaOGaaGOmaaaacqGH9a qpdaWcaaqaamaalaaabaGaciiBaiaac+gacaGGNbGaaG4maaqaaiGa cYgacaGGVbGaai4zaiaaikdaaaaabaWaaSaaaeaaciGGSbGaai4Bai aacEgacaaIYaaabaGaciiBaiaac+gacaGGNbGaaG4maaaaaaGaeyyp a0ZaaSaaaeaaciGGSbGaai4BaiaacEgacaaIZaGaaiOlaiGacYgaca GGVbGaai4zaiaaiodaaeaaciGGSbGaai4BaiaacEgacaaIYaGaaiOl aiGacYgacaGGVbGaai4zaiaaikdaaaGaeyypa0ZaaSaaaeaacaaI0a aabaGaamiEaaaaaeaaaaaa@A751@

 

MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F2@

 

                                                                             

24.  a n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@398B@  artan aritmetik bir dizi olmak uzere,

                                                                      a 1 , a 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaaabeaakiaacYcacaWGHbWaaSbaaSqaaiaaiodaaeqa aaaa@3A49@  ve a 21 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaGaaGymaaqabaaaaa@387C@

geometrik bir dizinin ardisik terimleri olduguna gore;

a n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@398B@  dizisinin ortak farki, 1. teriminin kac katidir?

a)      3

b)      2

c)      4

d)     6

e)      5

cevap: c sikki 4.

25.   

lim x1 sin(x1) x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacM gacaGGTbWaaSbaaSqaaiaadIhacqGHsgIRcaaIXaaabeaakmaalaaa baGaci4CaiaacMgacaGGUbGaaiikaiaadIhacqGHsislcaaIXaGaai ykaaqaamaakaaabaGaamiEaaWcbeaakiabgkHiTiaaigdaaaaaaa@464E@   ifadesinin degeri kactir?

a)      2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaaaa@36CA@

b)      1

c)      2

d)     1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaaa@377A@

e)      4

cozum: c sikki 2.

 x degerinin uslerine baktigimizda,

lim x1 sin(x1) x 1 x = x 1 2 1 1 2 =2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaciGGSb GaaiyAaiaac2gadaWgaaWcbaGaamiEaiabgkziUkaaigdaaeqaaOWa aSaaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaamiEaiabgkHiTiaaig dacaGGPaaabaWaaOaaaeaacaWG4baaleqaaOGaeyOeI0IaaGymaaaa aeaadaGcaaqaaiaadIhaaSqabaGccqGH9aqpcaWG4bWaaWbaaSqabe aadaWcaaqaaiaaigdaaeaacaaIYaaaaaaaaOqaamaalaaabaGaaGym aaqaamaalaaabaGaaGymaaqaaiaaikdaaaaaaiabg2da9iaaikdaaa aa@4F4D@

26.   

f(x)= ( (x1) 2 +x) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabg2da9iaacIcacaGGOaGaamiEaiabgkHiTiaa igdacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiEaiaacM cadaahaaWcbeqaaiaaikdaaaaaaa@434C@

Olduguna gore, f ' (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa aaleqabaGaai4jaaaakiaacIcacaaIXaGaaiykaaaa@39D4@  ifadesinin degeri kactir?

a)      4

b)      -4

c)      1

d)     -2

e)      2

cevap: c sikki 1.

f ' (x)=2. x1 2 +x .2. x1 +1 f ' (1)=2.( (11) 2 +1).2.(x1)+1 f ' (1)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb WaaWbaaSqabeaacaGGNaaaaOGaaiikaiaadIhacaGGPaGaeyypa0Ja aGOmaiaac6cadaqadaqaamaabmaabaGaamiEaiabgkHiTiaaigdaai aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG4baa caGLOaGaayzkaaGaaiOlaiaaikdacaGGUaWaaeWaaeaacaWG4bGaey OeI0IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdaaeaacaWGMbWa aWbaaSqabeaacaGGNaaaaOGaaiikaiaaigdacaGGPaGaeyypa0JaaG Omaiaac6cacaGGOaGaaiikaiaaigdacqGHsislcaaIXaGaaiykamaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaigdacaGGPaGaaiOlaiaaik dacaGGUaGaaiikaiaadIhacqGHsislcaaIXaGaaiykaiabgUcaRiaa igdaaeaacaWGMbWaaWbaaSqabeaacaGGNaaaaOGaaiikaiaaigdaca GGPaGaeyypa0JaaGymaaaaaa@685D@  

27.   

1 4 x+ x x x dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WcaaqaaiaadIhacqGHRaWkdaGcaaqaaiaadIhaaSqabaaakeaacaWG 4bGaeyOeI0YaaOaaaeaacaWG4baaleqaaaaakiaadsgacaWG4baale aacaaIXaaabaGaaGinaaqdcqGHRiI8aaaa@4198@  integralinde

x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WG4baaleqaaaaa@370B@  = v donusumu yapilirsa hangi integral elde edilir?

a)      1 4 v 2 +v v1 dv MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WcaaqaaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG2baa baGaamODaiabgkHiTiaaigdaaaGaamizaiaadAhaaSqaaiaaigdaae aacaaI0aaaniabgUIiYdaaaa@41F7@

b)      1 2 v 2 +v v1 dv MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WcaaqaaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG2baa baGaamODaiabgkHiTiaaigdaaaGaamizaiaadAhaaSqaaiaaigdaae aacaaIYaaaniabgUIiYdaaaa@41F5@

c)      1 4 2 v 2 +2v v1 dv MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WcaaqaaiaaikdacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa aGOmaiaadAhaaeaacaWG2bGaeyOeI0IaaGymaaaacaWGKbGaamODaa WcbaGaaGymaaqaaiaaisdaa0Gaey4kIipaaaa@436F@

d)     1 2 2 v 2 +2v v1 dv MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WcaaqaaiaaikdacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa aGOmaiaadAhaaeaacaWG2bGaeyOeI0IaaGymaaaacaWGKbGaamODaa WcbaGaaGymaaqaaiaaikdaa0Gaey4kIipaaaa@436D@

e)      1 2 v 2 +2v 2v2 dv MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WcaaqaaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGa amODaaqaaiaaikdacaWG2bGaeyOeI0IaaGOmaaaacaWGKbGaamODaa WcbaGaaGymaaqaaiaaikdaa0Gaey4kIipaaaa@436E@

cevap: d sikki 1 2 2 v 2 +2v v1 dv MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WcaaqaaiaaikdacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa aGOmaiaadAhaaeaacaWG2bGaeyOeI0IaaGymaaaacaWGKbGaamODaa WcbaGaaGymaaqaaiaaikdaa0Gaey4kIipaaaa@436D@

 

28.  Koordinat duzleminin 1. bolgesindeki y= lnx x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 da9maalaaabaGaciiBaiaac6gacaWG4baabaGaamiEaaaaaaa@3BE5@   egrisi x=e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadwgaaaa@38E0@  dogrusu ve x ekseni arasindaki sinirli bolgenin alani kac  b r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaadk hadaahaaWcbeqaaiaaikdaaaaaaa@38BA@  dir?

 a) 1 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGinaaaaaaa@377C@

b) e 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGLbaabaGaaGOmaaaaaaa@37A9@

c) 1

d) e 2 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGLbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaaaaa@389C@

e) 1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaaa@377A@

cevap: e sikki 1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaaa@377A@ .

                                                                                                       

29.   

x 0,2π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiopaajibabaGaaGimaiaacYcacaaIYaGaeqiWdahacaGLBbGaayzk aaaaaa@3E2A@  olmak uzere

sec 2 x= 1 cos2x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4Caiaacw gacaGGJbWaaWbaaSqabeaacaaIYaaaaOGaamiEaiabg2da9maalaaa baGaaGymaaqaaiGacogacaGGVbGaai4CaiaaikdacaWG4baaaaaa@4109@

Denklemini saglayan kac farkli x degeri vardir?

a)      0

b)      1

c)      2

d)     3

e)      4

cevap: c sikki 2.

 

 

30.   

f(x)=cos 3π 2 x +sin x+π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabg2da9iGacogacaGGVbGaai4CamaabmaabaWa aSaaaeaacaaIZaGaeqiWdahabaGaaGOmaaaacqGHsislcaWG4baaca GLOaGaayzkaaGaey4kaSIaci4CaiaacMgacaGGUbWaaeWaaeaacaWG 4bGaey4kaSIaeqiWdahacaGLOaGaayzkaaaaaa@4CA5@

olduguna gore, f π 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaWaaSaaaeaacqaHapaCaeaacaaIYaaaaaGaayjkaiaawMcaaaaa @3AF0@  kactir?

a)      -2

b)      0

c)      1

d)     -1

e)      2

cozum: a siki -2.

f(x)=cos 3π 2 x +sin x+π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabg2da9iGacogacaGGVbGaai4CamaabmaabaWa aSaaaeaacaaIZaGaeqiWdahabaGaaGOmaaaacqGHsislcaWG4baaca GLOaGaayzkaaGaey4kaSIaci4CaiaacMgacaGGUbWaaeWaaeaacaWG 4bGaey4kaSIaeqiWdahacaGLOaGaayzkaaaaaa@4CA5@  fonksiyonunda x degerini yerine yazdigimizda;

f( π 2 )=cos 3π 2 π 2 +sin π 2 +π f( π 2 )=cos π +sin 3π 2 f( π 2 )=1+1=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb GaaiikamaalaaabaGaeqiWdahabaGaaGOmaaaacaGGPaGaeyypa0Ja ci4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqaaiaaiodacqaHapaCae aacaaIYaaaaiabgkHiTmaalaaabaGaeqiWdahabaGaaGOmaaaaaiaa wIcacaGLPaaacqGHRaWkciGGZbGaaiyAaiaac6gadaqadaqaamaala aabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcqaHapaCaiaawIcacaGL PaaaaeaacaWGMbGaaiikamaalaaabaGaeqiWdahabaGaaGOmaaaaca GGPaGaeyypa0Jaci4yaiaac+gacaGGZbWaaeWaaeaacqaHapaCaiaa wIcacaGLPaaacqGHRaWkciGGZbGaaiyAaiaac6gadaqadaqaamaala aabaGaaG4maiabec8aWbqaaiaaikdaaaaacaGLOaGaayzkaaaabaGa amOzaiaacIcadaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaiabg2 da9iabgkHiTiaaigdacqGHRaWkcqGHsislcaaIXaGaeyypa0JaeyOe I0IaaGOmaaqaaaaaaa@727B@

 

 

31.   

1 3 2 : 1 9 3 1 27 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada WcaaqaaiaaigdaaeaacaaIZaWaaWbaaSqabeaacaaIYaaaaaaakiaa cQdadaWcaaqaaiaaigdaaeaacaaI5aWaaWbaaSqabeaacaaIZaaaaa aaaOqaamaalaaabaGaaGymaaqaaiaaikdacaaI3aaaaaaaaaa@3E06@

İ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaaaaaaaWdbiaa=btaaaa@37BE@ sleminin sonucu kactir?

a)      3 7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaCa aaleqabaGaaG4naaaaaaa@379E@

b)      3 6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaCa aaleqabaGaaGOnaaaaaaa@379D@                                                               

c)      3 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaCa aaleqabaGaaGynaaaaaaa@379C@   

d)     3 9 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaCa aaleqabaGaaGyoaaaaaaa@37A0@

e)      3 8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaCa aaleqabaGaaGioaaaaaaa@379F@

cevap: b sikki 3 6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaCa aaleqabaGaaGOnaaaaaaa@379D@

1 3 2 : 1 9 3 1 27 = 1 3 2 . 9 3 1 1 27 = 1 3 2 . ( 3 2 ) 3 1 1 27 = 1 3 2 . ( 3 2 ) 3 1 1 27 = 3 3 1 3 3 = 3 3 .3 3 = 3 6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaamaalaaabaGaaGymaaqaaiaaiodadaahaaWcbeqaaiaaikdaaaaa aOGaaiOoamaalaaabaGaaGymaaqaaiaaiMdadaahaaWcbeqaaiaaio daaaaaaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaiaaiEdaaaaaaiab g2da9maalaaabaWaaSaaaeaacaaIXaaabaGaaG4mamaaCaaaleqaba GaaGOmaaaaaaGccaGGUaWaaSaaaeaacaaI5aWaaWbaaSqabeaacaaI ZaaaaaGcbaGaaGymaaaaaeaadaWcaaqaaiaaigdaaeaacaaIYaGaaG 4naaaaaaGaeyypa0ZaaSaaaeaadaWcaaqaaiaaigdaaeaacaaIZaWa aWbaaSqabeaacaaIYaaaaaaakiaac6cadaWcaaqaaiaacIcacaaIZa WaaWbaaSqabeaacaaIYaaaaOGaaiykamaaCaaaleqabaGaaG4maaaa aOqaaiaaigdaaaaabaWaaSaaaeaacaaIXaaabaGaaGOmaiaaiEdaaa aaaiabg2da9maalaaabaWaaSaaaeaacaaIXaaabaGaaG4mamaaCaaa leqabaGaaGOmaaaaaaGccaGGUaWaaSaaaeaacaGGOaGaaG4mamaaCa aaleqabaGaaGOmaaaakiaacMcadaahaaWcbeqaaiaaiodaaaaakeaa caaIXaaaaaqaamaalaaabaGaaGymaaqaaiaaikdacaaI3aaaaaaacq GH9aqpdaWcaaqaaiaaiodadaahaaWcbeqaaiaaiodaaaaakeaadaWc aaqaaiaaigdaaeaacaaIZaWaaWbaaSqabeaacaaIZaaaaaaaaaGccq GH9aqpcaaIZaWaaWbaaSqabeaacaaIZaaaaOGaaiOlaiaaiodadaah aaWcbeqaaiaaiodaaaGccqGH9aqpcaaIZaWaaWbaaSqabeaacaaI2a aaaaGcbaaaaaa@6AD7@

32.   

3 x 3 2 = 1 9 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada GcbaqaaiaaiodadaahaaWcbeqaaiaadIhaaaaabaGaaG4maaaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabg2da9maalaaaba GaaGymaaqaaiaaiMdaaaaaaa@3DC1@

olduguna gore, x kactir?

a)      -3

b)      2 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIYaaabaGaaG4maaaaaaa@3869@

c)        3 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIZaaabaGaaGOmaaaaaaa@3869@

d)     3 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIZaaabaGaaGOmaaaaaaa@377C@

e)      3

cevap: a sikki -3.

  3 x 3 2 = 1 9 3 x 3 2 = ( ( 3 x ) 1 3 ) 2 1 9 = 3 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaqada qaamaakeaabaGaaG4mamaaCaaaleqabaGaamiEaaaaaeaacaaIZaaa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaS aaaeaacaaIXaaabaGaaGyoaaaaaeaadaqadaqaamaakeaabaGaaG4m amaaCaaaleqabaGaamiEaaaaaeaacaaIZaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaiikaiaacIcacaaIZaWa aWbaaSqabeaacaWG4baaaOGaaiykamaaCaaaleqabaWaaSaaaeaaca aIXaaabaGaaG4maaaaaaGccaGGPaWaaWbaaSqabeaacaaIYaaaaaGc baWaaSaaaeaacaaIXaaabaGaaGyoaaaacqGH9aqpcaaIZaWaaWbaaS qabeaacqGHsislcaaIYaaaaaaaaa@5085@  

Usleri esitledigimizde;

2 3 x=2 x=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaiaaikdaaeaacaaIZaaaaiaadIhacqGH9aqpcqGHsislcaaIYaaa baGaamiEaiabg2da9iabgkHiTiaaiodaaaaa@3EDC@

33.   

1 3 1 4 1 5 1 6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada WcaaqaaiaaigdaaeaacaaIZaaaaiabgkHiTmaalaaabaGaaGymaaqa aiaaisdaaaaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaadaWcaaqaai aaigdaaeaacaaI1aaaaiabgkHiTmaalaaabaGaaGymaaqaaiaaiAda aaaacaGLOaGaayzkaaaaaa@41F2@

İ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaaaaaaaWdbiaa=btaaaa@37BE@ sleminin sonucu kactir?

a)      1 30 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaG4maiaaicdaaaaaaa@3835@

b)      1 20 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaiaaicdaaaaaaa@3834@

c)      1 15 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGymaiaaiwdaaaaaaa@3838@

d)     1 10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGymaiaaicdaaaaaaa@3833@

e)      1 8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGioaaaaaaa@3780@

cevap: b sikki 1 20 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaiaaicdaaaaaaa@3834@ .

                                                                             

34.   

x 2 2x8 x 2 2 . x 4 + 1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadIhacqGH sislcaaI4aaabaWaaeWaaeaadaWcaaqaaiaadIhaaeaacaaIYaaaai abgkHiTiaaikdaaiaawIcacaGLPaaacaGGUaWaaeWaaeaadaWcaaqa aiaadIhaaeaacaaI0aaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaik daaaaacaGLOaGaayzkaaaaaaaa@47B2@

İ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaaaaaaaWdbiaa=btaaaa@37BE@ fadesinin sade hali asagidakilerden hangisidir?

a)      -4

b)      4

c)      -8

d)     8

e)      1 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGinaaaaaaa@377C@

cevap: d sikki 8.

x 2 2x8 x 2 2 . x 4 + 1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadIhacqGH sislcaaI4aaabaWaaeWaaeaadaWcaaqaaiaadIhaaeaacaaIYaaaai abgkHiTiaaikdaaiaawIcacaGLPaaacaGGUaWaaeWaaeaadaWcaaqa aiaadIhaaeaacaaI0aaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaik daaaaacaGLOaGaayzkaaaaaaaa@47B2@  =

x 2 2x8 x 2 2 . x 4 + 1 2 = (x4).(x+2) x4 2 . x+2 4 =8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadIhacqGH sislcaaI4aaabaWaaeWaaeaadaWcaaqaaiaadIhaaeaacaaIYaaaai abgkHiTiaaikdaaiaawIcacaGLPaaacaGGUaWaaeWaaeaadaWcaaqa aiaadIhaaeaacaaI0aaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaik daaaaacaGLOaGaayzkaaaaaiabg2da9maalaaabaGaaiikaiaadIha cqGHsislcaaI0aGaaiykaiaac6cacaGGOaGaamiEaiabgUcaRiaaik dacaGGPaaabaWaaeWaaeaadaWcaaqaaiaadIhacqGHsislcaaI0aaa baGaaGOmaaaaaiaawIcacaGLPaaacaGGUaWaaeWaaeaadaWcaaqaai aadIhacqGHRaWkcaaIYaaabaGaaGinaaaaaiaawIcacaGLPaaaaaGa eyypa0JaaGioaaaa@5DD8@

35.   

·         P(x) polinomunun (x-1) ile bolumunden kalan 1

·         P(x-1) polinomunun sabit terimi -5

Olduguna gore P(x) in x 2 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaaigdaaaa@398B@  ile bolumunden kalan asagidakilerden hangisidir?

a)      2x-3

b)      3x

c)      3x-2

d)     2x

e)      2x+3

cevap: c sikki. 3x-2

                                                                                                       

36.   

i 2 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaCa aaleqabaGaaGOmaaaakiabg2da9iabgkHiTiaaigdaaaa@3A82@  olmak uzere

1+i 5 . 1i 6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaey4kaSIaamyAaaGaayjkaiaawMcaamaaCaaaleqabaGaaGyn aaaakiaac6cadaqadaqaaiaaigdacqGHsislcaWGPbaacaGLOaGaay zkaaWaaWbaaSqabeaacaaI2aaaaaaa@40BB@  ifadesi asagidakilerden hangisine esittir?

a)      64

b)      64-64i

c)      32i-32

d)     64i-64

e)      32-32i

cevap: e sikki 32-32i

 

37.   

a n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@398B@  dizisi

a n = a n+1 ,n<4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0Ja amyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGSaGaam OBaiabgYda8iaaisdaaaa@41A2@

a n =n a n1 ,n4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyypa0Ja amOBaiabgkHiTiaadggadaWgaaWcbaGaamOBaiabgkHiTiaaigdaae qaaOGaaiilaiaad6gacqGHLjYScaaI0aaaaa@444F@

Seklindedir.

Buna gore a 3 + a 4 + a 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIZaaabeaakiabgUcaRiaadggadaWgaaWcbaGaaGinaaqa baGccqGHRaWkcaWGHbWaaSbaaSqaaiaaiwdaaeqaaaaa@3D3B@  ifadesinin degeri kactir?

a)      7

b)      9

c)      8

d)     6

e)      10

cevap: a sikki 7

  a 3 + a 4 + a 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIZaaabeaakiabgUcaRiaadggadaWgaaWcbaGaaGinaaqa baGccqGHRaWkcaWGHbWaaSbaaSqaaiaaiwdaaeqaaaaa@3D3B@  

a 3 = a 4 a 4 =4 a 3 ,2 a 4 =4, a 4 =2 a 5 =5 a 4 42+2+52=7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGHb WaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaI 0aaabeaaaOqaaiaadggadaWgaaWcbaGaaGinaaqabaGccqGH9aqpca aI0aGaeyOeI0IaamyyamaaBaaaleaacaaIZaaabeaakiaacYcacaaI YaGaamyyamaaBaaaleaacaaI0aaabeaakiabg2da9iaaisdacaGGSa GaamyyamaaBaaaleaacaaI0aaabeaakiabg2da9iaaikdaaeaacaWG HbWaaSbaaSqaaiaaiwdaaeqaaOGaeyypa0JaaGynaiabgkHiTiaadg gadaWgaaWcbaGaaGinaaqabaaakeaacaaI0aGaeyOeI0IaaGOmaiab gUcaRiaaikdacqGHRaWkcaaI1aGaeyOeI0IaaGOmaiabg2da9iaaiE daaaaa@59EC@  

Esitlikte a 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI0aaabeaaaaa@37C3@  ifadesini yerine yazip sol tarafa attigimizda , a 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI0aaabeaaaaa@37C3@  ’un 2 oldugunu buluruz.

 

38.   

x tam sayi olmak uzere

2 x 2 1 . x1 x+2 <0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaWaaWbaaSqabeaacaWG4bWaaWbaaWqabeaacaaIYaaaaSGaeyOe I0IaaGymaaaakiaac6cadaqadaqaaiaadIhacqGHsislcaaIXaaaca GLOaGaayzkaaaabaGaamiEaiabgUcaRiaaikdaaaGaeyipaWJaaGim aaaa@43C9@

esitsizligini  kac tane x degeri saglar?

a)      2

b)      3

c)      4

d)     5

e)      1

cevap: a sikki 2.

 x degerleri; 0, -1. X 2 farkli deger alir.

 

39.   

log 5 2 =x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbWaaSbaaSqaaiaaiwdaaeqaaOWaaOaaaeaacaaIYaaaleqa aOGaeyypa0JaamiEaaaa@3C9C@  olduguna gore,

1 25 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada WcaaqaaiaaigdaaeaacaaIYaGaaGynaaaaaiaawIcacaGLPaaadaah aaWcbeqaaiaadIhaaaaaaa@3AEC@  ifadesinin degeri kactir?

a)      4

b)      2 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIYaaaleqaaaaa@36CA@

c)      2

d)     1 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGinaaaaaaa@377C@

e)      1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaaa@377A@

cevap: e sikki 1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaaa@377A@ .

  1 25 x 1 25 log 5 2 = ( 5 2 ) log 5 2 , log 5 2 = log 5 2 1 2 = 1 2 log 5 2 ( 5 2 ) 1 2 log 5 2 = 5 1 log 5 2 = 2 1 = 1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaqada qaamaalaaabaGaaGymaaqaaiaaikdacaaI1aaaaaGaayjkaiaawMca amaaCaaaleqabaGaamiEaaaaaOqaamaabmaabaWaaSaaaeaacaaIXa aabaGaaGOmaiaaiwdaaaaacaGLOaGaayzkaaWaaWbaaSqabeaaciGG SbGaai4BaiaacEgadaWgaaadbaGaaGynaaqabaWcdaGcaaqaaiaaik daaWqabaaaaOGaeyypa0JaaiikaiaaiwdadaahaaWcbeqaaiabgkHi TiaaikdaaaGccaGGPaWaaWbaaSqabeaaciGGSbGaai4BaiaacEgada WgaaadbaGaaGynaaqabaWcdaGcaaqaaiaaikdaaWqabaaaaOGaaiil aiGacYgacaGGVbGaai4zamaaBaaaleaacaaI1aaabeaakmaakaaaba GaaGOmaaWcbeaakiabg2da9iGacYgacaGGVbGaai4zamaaBaaaleaa caaI1aaabeaakiaaikdadaahaaWcbeqaamaalaaabaGaaGymaaqaai aaikdaaaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaaciGG SbGaai4BaiaacEgadaWgaaWcbaGaaGynaaqabaGccaaIYaaabaGaai ikaiaaiwdadaahaaWcbeqaaiabgkHiTiaaikdaaaGccaGGPaWaaWba aSqabeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiGacYgacaGGVbGaai 4zamaaBaaameaacaaI1aaabeaaliaaikdaaaGccqGH9aqpcaaI1aWa aWbaaSqabeaacqGHsislcaaIXaGaciiBaiaac+gacaGGNbWaaSbaaW qaaiaaiwdaaeqaaSGaaGOmaaaakiabg2da9iaaikdadaahaaWcbeqa aiabgkHiTiaaigdaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYa aaaaaaaa@79AE@

 

40.   

log5log2=a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbGaaGynaiabgkHiTiGacYgacaGGVbGaai4zaiaaikdacqGH 9aqpcaWGHbaaaa@3FE7@

olduguna gore,

log5+log4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbGaaGynaiabgUcaRiGacYgacaGGVbGaai4zaiaaisdaaaa@3DF2@

ifadesinin a turunden degeri asagidakilerden hangisidir?

a)      2a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaGaeyOeI0Iaamyyaaqaaiaaikdaaaaaaa@394E@

b)      2a+1

c)      3a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIZaGaeyOeI0Iaamyyaaqaaiaaikdaaaaaaa@394F@

d)     a2 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGHbGaeyOeI0IaaGOmaaqaaiaaikdaaaaaaa@394E@

e)      a3 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGHbGaeyOeI0IaaG4maaqaaiaaikdaaaaaaa@394F@

cevap: c sikki 3a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIZaGaeyOeI0Iaamyyaaqaaiaaikdaaaaaaa@394F@

log5+log4, log4=2log2 log5+2log2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaciGGSb Gaai4BaiaacEgacaaI1aGaey4kaSIaciiBaiaac+gacaGGNbGaaGin aiaacYcaaeaaciGGSbGaai4BaiaacEgacaaI0aGaeyypa0JaaGOmai GacYgacaGGVbGaai4zaiaaikdaaeaaciGGSbGaai4BaiaacEgacaaI 1aGaey4kaSIaaGOmaiGacYgacaGGVbGaai4zaiaaikdaaaaa@503F@  ve   log5+log2=log10=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbGaaGynaiabgUcaRiGacYgacaGGVbGaai4zaiaaikdacqGH 9aqpciGGSbGaai4BaiaacEgacaaIXaGaaGimaiabg2da9iaaigdaaa a@44FC@  olduguna gore,

a+2log2=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGHb Gaey4kaSIaaGOmaiGacYgacaGGVbGaai4zaiaaikdacqGH9aqpcaaI Xaaabaaaaaa@3DCB@  ve 1a=2log2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaadggacqGH9aqpcaaIYaGaciiBaiaac+gacaGGNbGaaGOmaaaa @3DCF@ ,

a+2.(1log5)=1 a+22log5=1 2log5=a+1 log5= a+1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGHb Gaey4kaSIaaGOmaiaac6cacaGGOaGaaGymaiabgkHiTiGacYgacaGG VbGaai4zaiaaiwdacaGGPaGaeyypa0JaaGymaaqaaiaadggacqGHRa WkcaaIYaGaeyOeI0IaaGOmaiGacYgacaGGVbGaai4zaiaaiwdacqGH 9aqpcaaIXaaabaGaaGOmaiGacYgacaGGVbGaai4zaiaaiwdacqGH9a qpcaWGHbGaey4kaSIaaGymaaqaaiGacYgacaGGVbGaai4zaiaaiwda cqGH9aqpdaWcaaqaaiaadggacqGHRaWkcaaIXaaabaGaaGOmaaaaaa aa@5AB8@  ise log5+2log2= a+1 2 +1a= 3a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaciGGSb Gaai4BaiaacEgacaaI1aGaey4kaSIaaGOmaiGacYgacaGGVbGaai4z aiaaikdacqGH9aqpdaWcaaqaaiaadggacqGHRaWkcaaIXaaabaGaaG OmaaaacqGHRaWkcaaIXaGaeyOeI0Iaamyyaiabg2da9maalaaabaGa aG4maiabgkHiTiaadggaaeaacaaIYaaaaaqaaaqaaaaaaa@4ADB@

41.   

f fonksiyonunun tanim kumesi  3,5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq GHsislcaaIZaGaaiilaiaaiwdaaiaawUfacaGLDbaaaaa@3AFE@  olduguna gore,

g(x)=f(x+2)+f(x4) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacI cacaWG4bGaaiykaiabg2da9iaadAgacaGGOaGaamiEaiabgUcaRiaa ikdacaGGPaGaey4kaSIaamOzaiaacIcacaWG4bGaeyOeI0IaaGinai aacMcaaaa@44E8@

fonksiyonunun tanim kumesi asagidakilerden hangisidir?

a)      3,5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq GHsislcaaIZaGaaiilaiaaiwdaaiaawUfacaGLDbaaaaa@3AFE@

b)      1,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca aIXaGaaiilaiaaiodaaiaawUfacaGLDbaaaaa@3A0D@

c)      1,7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca aIXaGaaiilaiaaiEdaaiaawUfacaGLDbaaaaa@3A11@

d)     7,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq GHsislcaaI3aGaaiilaiabgkHiTiaaigdaaiaawUfacaGLDbaaaaa@3BEB@

e)      7,7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq GHsislcaaI3aGaaiilaiaaiEdaaiaawUfacaGLDbaaaaa@3B04@

cevap:  e sikki 7,7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq GHsislcaaI3aGaaiilaiaaiEdaaiaawUfacaGLDbaaaaa@3B04@

g(x)=f(x+2)+f(x4) f(x+2)+f(x4), f(x+2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGNb GaaiikaiaadIhacaGGPaGaeyypa0JaamOzaiaacIcacaWG4bGaey4k aSIaaGOmaiaacMcacqGHRaWkcaWGMbGaaiikaiaadIhacqGHsislca aI0aGaaiykaaqaaiaadAgacaGGOaGaamiEaiabgUcaRiaaikdacaGG PaGaey4kaSIaamOzaiaacIcacaWG4bGaeyOeI0IaaGinaiaacMcaca GGSaaabaGaamOzaiaacIcacaWG4bGaey4kaSIaaGOmaiaacMcaaaaa @552C@  araligi 1,7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq GHsislcaaIXaGaaiilaiaaiEdaaiaawUfacaGLDbaaaaa@3AFE@  ve f(x4) 7,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaeyOeI0IaaGinaiaacMcacqGHsgIRdaWadaqaaiabgkHi TiaaiEdacaGGSaGaaGymaaGaay5waiaaw2faaaaa@41D7@  olduguna gore cevap 7,7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq GHsislcaaI3aGaaiilaiaaiEdaaiaawUfacaGLDbaaaaa@3B04@

MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F2@

 

42.   

f x =lnx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iGacYgacaGGUbGaamiE aaaa@3D4B@

g x =f lnx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadAgadaqadaqaaiGa cYgacaGGUbGaamiEaaGaayjkaiaawMcaaaaa@3FC0@  olmak uzere , g ' 1 e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCa aaleqabaGaai4jaaaakmaabmaabaWaaSaaaeaacaaIXaaabaGaamyz aaaaaiaawIcacaGLPaaaaaa@3AFF@  asagidakilerden hangisine esittir?

a)      -1

b)      1

c)      -e

d)     e

e)      1 e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIXaaabaGaamyzaaaaaaa@3895@

 

cevap: d sikki e.

  g x =f lnx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadAgadaqadaqaaiGa cYgacaGGUbGaamiEaaGaayjkaiaawMcaaaaa@3FC0@

g ' 1 e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCa aaleqabaGaai4jaaaakmaabmaabaWaaSaaaeaacaaIXaaabaGaamyz aaaaaiaawIcacaGLPaaaaaa@3AFF@  ise, g ' 1 e = f ' (ln( 1 e ))= 1 1 e =e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCa aaleqabaGaai4jaaaakmaabmaabaWaaSaaaeaacaaIXaaabaGaamyz aaaaaiaawIcacaGLPaaacqGH9aqpcaWGMbWaaWbaaSqabeaacaGGNa aaaOGaaiikaiGacYgacaGGUbGaaiikamaalaaabaGaaGymaaqaaiaa dwgaaaGaaiykaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaadaWcaa qaaiaaigdaaeaacaWGLbaaaaaacqGH9aqpcaWGLbaaaa@4993@

 

 

43.   

1 0 x. x+1 dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaaca WG4bGaaiOlamaakaaabaGaamiEaiabgUcaRiaaigdaaSqabaaabaGa eyOeI0IaaGymaaqaaiaaicdaa0Gaey4kIipakiaadsgacaWG4baaaa@40C7@  ifadesinin degeri kactir?

a)      1 15 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGymaiaaiwdaaaaaaa@3838@

b)      2 15 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIYaaabaGaaGymaiaaiwdaaaaaaa@3926@

c)      4 15 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaI0aaabaGaaGymaiaaiwdaaaaaaa@3928@

d)     4 15 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI0aaabaGaaGymaiaaiwdaaaaaaa@383B@

e)      2 15 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaGymaiaaiwdaaaaaaa@3839@

cevap : c sikki   1 0 x. x+1 dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaaca WG4bGaaiOlamaakaaabaGaamiEaiabgUcaRiaaigdaaSqabaaabaGa eyOeI0IaaGymaaqaaiaaicdaa0Gaey4kIipakiaadsgacaWG4baaaa@40C7@  = 4 15 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaI0aaabaGaaGymaiaaiwdaaaaaaa@3928@                      MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F2@

44.   

0x2π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadIhacqGHKjYOcaaIYaGaeqiWdahaaa@3D8D@  olmak uzere,

sin2x= cos 2 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaaGOmaiaadIhacqGH9aqpciGGJbGaai4Baiaacohadaah aaWcbeqaaiaaikdaaaGccaWG4baaaa@404D@  esitligini saglayan kac farkli deger vardir?

a)      0

b)      1

c)      2

d)     3

e)      4

cevap: e sikki 4.

MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F2@

 

                                                                             

45.  sinx.cosx tanx sin 2 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaci GGZbGaaiyAaiaac6gacaWG4bGaaiOlaiGacogacaGGVbGaai4Caiaa dIhaaeaaciGG0bGaaiyyaiaac6gacaWG4baaaiabgkHiTiGacohaca GGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaadIhaaaa@47DD@  ifadesinin esiti hangisidir?

a)      sin x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaSaaaeaacaWG4baabaGaaGOmaaaaaaa@3A94@

b)      cos x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbWaaSaaaeaacaWG4baabaGaaGOmaaaaaaa@3A8F@

c)      cos2x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaGOmaiaadIhaaaa@3A7F@

d)     2sinx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiGaco hacaGGPbGaaiOBaiaadIhaaaa@3A84@

e)      2cosx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiGaco gacaGGVbGaai4CaiaadIhaaaa@3A7F@

cozum: c sikki cos2x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaGOmaiaadIhaaaa@3A7F@

  sinx.cosx tanx sin 2 x sinx.cosx sinx cosx sin 2 x= cos 2 x sin 2 x=cos2x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaiGacohacaGGPbGaaiOBaiaadIhacaGGUaGaci4yaiaac+gacaGG ZbGaamiEaaqaaiGacshacaGGHbGaaiOBaiaadIhaaaGaeyOeI0Iaci 4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaamiEaaqaamaa laaabaGaci4CaiaacMgacaGGUbGaamiEaiaac6caciGGJbGaai4Bai aacohacaWG4baabaWaaSaaaeaaciGGZbGaaiyAaiaac6gacaWG4baa baGaci4yaiaac+gacaGGZbGaamiEaaaaaaGaeyOeI0Iaci4CaiaacM gacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaamiEaiabg2da9iGacoga caGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiaadIhacqGHsislci GGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaWG4bGaeyyp a0Jaci4yaiaac+gacaGGZbGaaGOmaiaadIhaaaaa@6EC5@

46.   

x 2 2x 2 9 x3 . x+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada qadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaGa amiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTi aaiMdaaeaadaqadaqaaiaadIhacqGHsislcaaIZaaacaGLOaGaayzk aaGaaiOlamaabmaabaGaamiEaiabgUcaRiaaigdaaiaawIcacaGLPa aaaaaaaa@47CA@  ifadesinin en sade hali asagidakilerden hangisidir?

a)      1

b)      x 2 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaaiodaaaa@398D@

c)      x-1

d)     x+2

e)      x 2 2x+3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG4bGaey4kaSIaaG4m aaaa@3C28@

cevap: e sikki x 2 2x+3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG4bGaey4kaSIaaG4m aaaa@3C28@

  x 2 2x 2 9 x3 . x+1 = x 2 2x3 .( x 2 2x+3) x3 . x+1 = x3 . x+1 .( x 2 2x+3) x3 . x+1 =( x 2 2x+3) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaamaabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa ikdacaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey OeI0IaaGyoaaqaamaabmaabaGaamiEaiabgkHiTiaaiodaaiaawIca caGLPaaacaGGUaWaaeWaaeaacaWG4bGaey4kaSIaaGymaaGaayjkai aawMcaaaaacqGH9aqpdaWcaaqaamaabmaabaGaamiEamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaikdacaWG4bGaeyOeI0IaaG4maaGaay jkaiaawMcaaiaac6cacaGGOaGaamiEamaaCaaaleqabaGaaGOmaaaa kiabgkHiTiaaikdacaWG4bGaey4kaSIaaG4maiaacMcaaeaadaqada qaaiaadIhacqGHsislcaaIZaaacaGLOaGaayzkaaGaaiOlamaabmaa baGaamiEaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaGaeyypa0daba WaaSaaaeaadaqadaqaaiaadIhacqGHsislcaaIZaaacaGLOaGaayzk aaGaaiOlamaabmaabaGaamiEaiabgUcaRiaaigdaaiaawIcacaGLPa aacaGGUaGaaiikaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsisl caaIYaGaamiEaiabgUcaRiaaiodacaGGPaaabaWaaeWaaeaacaWG4b GaeyOeI0IaaG4maaGaayjkaiaawMcaaiaac6cadaqadaqaaiaadIha cqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaiabg2da9iaacIcacaWG4b WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadIhacqGHRaWk caaIZaGaaiykaaaaaa@85E9@

47.  Gercel sayilar kumesi uzerinde bir f fonksiyonu

f(x)= x1 x + 4 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabg2da9maalaaabaGaamiEaiabgkHiTiaaigda aeaacaWG4bWaaWraaSqabeaacaaI0aaaaOGaey4kaSIaaGymaaaaaa a@407F@  biciminde tanimlaniyor.

Buna gore (fof)(1) ifadesinin degeri kactir?

a) -2

b) -1

c) 0

d) 1

e) 1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOmaaaaaaa@3867@

cevap:  b sikki -1.

f(1)= 11 1 4 +1 =0 f(0)= 01 0 4 +1 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb GaaiikaiaaigdacaGGPaGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0Ia aGymaaqaaiaaigdadaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIXa aaaiabg2da9iaaicdaaeaacaWGMbGaaiikaiaaicdacaGGPaGaeyyp a0ZaaSaaaeaacaaIWaGaeyOeI0IaaGymaaqaaiaaicdadaahaaWcbe qaaiaaisdaaaGccqGHRaWkcaaIXaaaaiabg2da9iabgkHiTiaaigda aaaa@4DEF@

 

48.   

P(x)= x 2 +1 2 +2 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI cacaWG4bGaaiykaiabg2da9maabmaabaWaaeWaaeaacaWG4bWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaakiabgUcaRiaaikdaaiaawIcacaGLPaaadaah aaWcbeqaaiaaikdaaaaaaa@443D@

olmak uzere,

P( x 2 ).Q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI cacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaaiykaiaac6cacaWGrbGa aiikaiaadIhacaGGPaaaaa@3DEF@

polinomunun derecesi 40 olduguna gore, Q(x) P(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGrbGaaiikaiaadIhacaGGPaaabaGaamiuaiaacIcacaWG4bGaaiyk aaaaaaa@3C5A@  polinomunun derecesi kactir?

a)      3

b)      12

c)      18

d)     8

e)      16

CEVAP: E S İ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaaaaaaaWdbiaa=btaaaa@37BE@ KK İ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbyaqa aaaaaaaaWdbiaa=btaaaa@37BE@ 16

49.   

Asagidakilerden hangisi

x x x1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgw MiZoaalaaabaGaamiEaaqaaiaadIhacqGHsislcaaIXaaaaaaa@3C68@

esitsizligini saglayan x gercel sayisinin en genis araligidir?

a)      0,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaKGeaeaaca aIWaGaaiilaiaaikdaaiaawUfacaGLPaaaaaa@39EC@  

b)      1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaaiilaiabg6HiLcGaayjkaiaawMcaaaaa@3A58@

c)      0,1 2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaKGeaeaaca aIWaGaaiilaiaaigdaaiaawUfacaGLPaaacqGHQicYdaqcsaqaaiaa ikdacaGGSaGaeyOhIukacaGLBbGaayzkaaaaaa@403B@

d)     0,1 2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaKamaeaaca aIWaGaaiilaiaaigdaaiaawIcacaGLDbaacqGHQicYdaqcsaqaaiaa ikdacaGGSaGaeyOhIukacaGLBbGaayzkaaaaaa@405A@

e)      ,1 2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq GHsislcqGHEisPcaGGSaGaaGymaaGaayjkaiaawMcaaiabgQIiipaa jibabaGaaGOmaiaacYcacqGHEisPaiaawUfacaGLPaaaaaa@4195@

cevap: c sikki 0,1 2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaKGeaeaaca aIWaGaaiilaiaaigdaaiaawUfacaGLPaaacqGHQicYdaqcsaqaaiaa ikdacaGGSaGaeyOhIukacaGLBbGaayzkaaaaaa@403B@ .

50.   

y= x 2 +4x+3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 da9iaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aGaamiE aiabgUcaRiaaiodaaaa@3E23@

fonksiyonunun grafiginin m birim saga ve n birim yukari otelenmesi ile

y= x 2 2x+4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 da9iaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaGaamiE aiabgUcaRiaaisdaaaa@3E2D@

fonksiyonu elde ediliyor. Buna gore, m-n kactir?

a)      -7

b)      -2

c)      1

d)     2

e)      -1

cevap: E sikki -1.

51.   

x 2 5x+4 = 2x2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca WG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGynaiaadIhacqGH RaWkcaaI0aaacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaaIYaGaam iEaiabgkHiTiaaikdaaiaawEa7caGLiWoaaaa@46D8@  esitligini saglayan x degerleri toplami kactir?

 

a)      9

b)      8

c)      3

d)     7

e)      6

cevap: A sikki 9.

52.   

a= log x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2 da9iGacYgacaGGVbGaai4zamaaBaaaleaacaWG4baabeaakiaaikda aaa@3C9E@

b= log 4 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabg2 da9iGacYgacaGGVbGaai4zamaaBaaaleaacaaI0aaabeaakiaadIha aaa@3CA1@

c= log 2 2x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2 da9iGacYgacaGGVbGaai4zamaaBaaaleaacaaIYaaabeaakiaaikda caWG4baaaa@3D5C@

olmak uzere, x= 1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaaa@377A@  icin asagidakilerden hangisi dogrudur?

MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F2@

 

a)      c>a>b

b)      a>b>c

c)      a>c>b

d)     c>b>a

e)      b>c>a

 

cevap: D sikki. c>b>a

 

53.   

log6=x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbGaaGOnaiabg2da9iaadIhaaaa@3B86@  olduguna gore,

log 9 25 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbWaaSaaaeaacaaI5aaabaGaaGOmaiaaiwdaaaaaaa@3B11@

ifadesinin x cinsinden degeri hangisidir?

a)      x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaaaaa@37D9@

b)      x1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaaaaa@3B0A@

c)      x+1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaaaaa@3AFF@  

d)     2x+2

e)      2x-2

cevap: E sikki. 2x-2

 

54.   

log 2 x+2 log 2 x1 =2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG4bGaey4k aSIaaGOmaaGaayjkaiaawMcaaiabgkHiTiGacYgacaGGVbGaai4zam aaBaaaleaacaaIYaaabeaakmaabmaabaGaamiEaiabgkHiTiaaigda aiaawIcacaGLPaaacqGH9aqpcaaIYaaaaa@4878@

denklemini saglayan x  degeri icin

log x x+2 + log x+6 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbWaaSbaaSqaaiaadIhaaeqaaOWaaeWaaeaacaWG4bGaey4k aSIaaGOmaaGaayjkaiaawMcaaiabgUcaRiGacYgacaGGVbGaai4zam aaBaaaleaacaWG4bGaey4kaSIaaGOnaaqabaGccaWG4baaaa@459E@

ifadesinin degeri kactir?

a)      5 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI1aaabaGaaGOmaaaaaaa@377E@

b)      2

c)      7 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI3aaabaGaaG4maaaaaaa@3781@

d)     4

e)      9 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI5aaabaGaaGOmaaaaaaa@3782@

cevap: C sikki, 7 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI3aaabaGaaG4maaaaaaa@3781@ .

55.  Aritmetik bir dizi olan a n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGUbaabeaaaaa@37F8@  dizisinin ilk 3 terimi

x, x+1, y

geometrik bir dizi olan b n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGUbaabeaaaaa@37F9@  dizisinin ilk 3 terimi

x, 2x, y

olduguna gore a 4 b 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI0aaabeaakiabgkHiTiaadkgadaWgaaWcbaGaaGinaaqa baaaaa@3A8B@  kactir?

a)    8 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaI4aaabaGaaG4maaaaaaa@386F@

b)      1

c)       -1

d)   5 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI1aaabaGaaG4maaaaaaa@377F@

e)      5 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaI1aaabaGaaG4maaaaaaa@386C@

 

 

56.   

f(x)=sinx+cosx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaadIhacqGH RaWkciGGJbGaai4BaiaacohacaWG4baaaa@42C1@

olduguna gore  f ' π 2 f ' (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa aaleqabaGaai4jaaaakmaabmaabaWaaSaaaeaacqaHapaCaeaacaaI YaaaaaGaayjkaiaawMcaaiabgkHiTiaadAgadaahaaWcbeqaaiaacE caaaGccaGGOaGaaGimaiaacMcaaaa@409F@  kactir?

a)      0

b)      -2

c)      2

d)     1

e)      -1

cevap: B sikki. -2

57.   

1 4 x x +x dx1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WcaaqaaiaadIhaaeaadaGcaaqaaiaadIhaaSqabaGccqGHRaWkcaWG 4baaaiaadsgacaWG4bGaeyOeI0IaaGymaaWcbaGaaGymaaqaaiaais daa0Gaey4kIipaaaa@4131@

isleminin sonucu kactir?

a)      o

b)      ln2

c)      ln3

d)     ln 9 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gadaWcaaqaaiaaiMdaaeaacaaI0aaaaaaa@3968@

e)      ln 3 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gadaWcaaqaaiaaiodaaeaacaaIYaaaaaaa@3960@

cevap: D sikki ln 9 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gadaWcaaqaaiaaiMdaaeaacaaI0aaaaaaa@3968@ .

 

 

 

58.   

0 1 e x .xdx+ 0 1 e x .dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaaca WGLbWaaWbaaSqabeaacaWG4baaaOGaaiOlaiaadIhacaWGKbGaamiE aiabgUcaRmaapedabaGaamyzamaaCaaaleqabaGaamiEaaaakiaac6 cacaWGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipaaSqa aiaaicdaaeaacaaIXaaaniabgUIiYdaaaa@487A@

ifadesinin degeri kactir?

a)      e-1

b)      e

c)      1

d)     e+1

e)      e 2 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaaigdaaaa@3978@

cevap: B sikki. e

 

 

59.   

ln( e x +x)=x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gacaGGOaGaamyzamaaCaaaleqabaGaamiEaaaakiabgUcaRiaadIha caGGPaGaeyypa0JaamiEaaaa@3F30@

olduguna gore, ln( e x x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gacaGGOaGaamyzamaaCaaaleqabaGaamiEaaaakiabgkHiTiaadIha caGGPaaaaa@3D38@

ifadesinin degeri kactir?

a)      -1

b)      -2

c)      0

d)     1

e)      2

cevap: C sikki, 0.

60.   

x+1> x2 x >x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgU caRiaaigdacqGH+aGpdaWcaaqaaiaadIhacqGHsislcaaIYaaabaGa amiEaaaacqGH+aGpcqGHsislcaWG4baaaa@403A@

esitsizliginin cozum araligi hangisidir?

a)      (0,∞)

b)      (1,∞)

c)      (0,1)

d)     (-∞,-2)

e)      (-∞,0)

cevap: B sikki, (1,∞)

MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F2@

 

61.   

n dogal sayi olmak uzere

26!0(mod 5 n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiA dacaGGHaGaeyyyIORaaGimaiaacIcaciGGTbGaai4BaiaacsgacaaI 1aWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@40A7@  olduguna gore, n en cok kactir?

a)      7

b)      8

c)      6

d)     5

e)      9

cevap: C sikki, 6.